MP2I - 2025/2026 Informatique - TP n°15 - Arbres et tries 1

TP n°15 - Arbres et tries

1 Mise en jambes : arbres binaires

On rappelle qu’en Ocaml les arbres binaires peuvent étre représentés par le type suivant :

type 'a arbrebin = Vide | N of 'a arbrebin *x 'a * 'a arbrebin;;

m Q1. Représenter 'arbre ci-dessus en Ocaml.
m Q2. Ecrire une fonction récursive hauteur : 'a arbrebin -> int qui calcule la hauteur d’un arbre.

m Q3. Ecrire une fonction récursive somme : int arbrebin -> int qui calcule la somme des étiquettes d’une arbre.

On considére 'arbre suivant :

® Q4. Donner l'ordre dans lequel les noeuds sont traités par :
m Un parcours en profondeur infixe
m Un parcours en profondeur préfixe
m Un parcours en profondeur suffixe
m Un parcours en largeur

m Q5. Ecrire une fonction en Ocaml est_dans a e: 'a arbrebin-> 'a -> bool qui vérifie si une étiquette est dans un
arbre en utilisant un parcours en largeur.
On pourra utilsier le module Queue de Ocaml. Les primitives ont les noms suivants, le type 'a Queue.t dési-
gnant une file d’éléments de type ’'a:

B Queue.create : unit -> 'a Queue.t qui crée une file vide

m Queue.is_empty : 'a Queue.t -> bool qui vérifie si une file est vide
m Queue.push : 'a -> 'a Queue.t -> unit qui ajoute un élément (equivalent de enfile)
® Queue.pop : 'a Queue.t -> 'a qui retire et renvoie I'élément le plus récent (équivalent de defile)

® Queue.peek : 'a Queue.t -> 'a quirenvoie sans retirer I’élément le plus récent.

m Q6. Dessiner ’'arbre parfait 4 15 sommets. Que remarquez-vous sur le nombre de fils d'un sommet d'un arbre
parfait? Que remarquez vous sur la hauteur des deux sous-arbres d’'un noeud dans un arbre parfait? On
admettre que ces deux propriétés caractérisent les arbres parfaits.

m Q7. En utilisant la remarque précédente, écrire en Ocaml une fonction qui vérifie si un arbre est parfait en utili-
sant un parcours en profondeur.

MP2I - 2025/2026 Informatique - TP n°15 - Arbres et tries 2

2 Arbres n-aires

On définit les arbres n-aires ainsi en Ocaml (Ici on utilise une liste pour ranger les sous-arbres) :

type 'a arbre = Noeud of 'a * ('a arbre list);;

On définit aussi un alias pour les listes d’arbres, qui sont des foréts.

type 'a foret = 'a arbre list;;

©
®/@\ %

Exemple d’arbre
m Q8. Définir I'arbre précédent en Ocaml.

On peut calculer la hauteur en Caml a I'aide de deux fonctions mutuellement récursives :

let rec hauteur arbre =
match arbre with
| Noeud(_,[]1) -> 0
| Noeud (_, fils) -> 1 + max_hauteur_foret fils
and max_hauteur_foret foret = match foret with

| [1->0
| arbre :: autres -> max (hauteur arbre) (max_hauteur_foret autres)
m Q9. Compléter le code suivant pour écrire la fonction taille : 'a arbre -> int.

let rec taille arbre = (xcalcule le nombre de sommets d'un arbrex)
match arbre with
| Noeud(_,[]1) ->
| Noeud (_, fils) ->
and taille_foret foret = (xcalcule le nombre de noeuds dans une foret d'arbresx)
match foret with
| 1 ->

| arbre :: autres ->

On peut étendre la notion de parcours vue sur les arbres binaires aux arbres quelconques.

m Le parcours préfixe consiste a traiter 'étiquette avant de traiter les sous-arbres.
m Le parcours infixe n’a plus de sens puisqu’on peut avoir un nombre quelconque de sous-arbres.
m Le parcours suffixe consiste a traiter les sous-arbres avant de traiter I’étiquette.

m Le parcours en largeur est défini de la méme facon.

m Q10. Ecrire une fonction parcours_prefixe : int arbre -> unit qui affiche les noeuds dans l'ordre du parcours
préfixe. Comme pour la taille, on peut faire une fonction pour traiter un noeud et une fonction pour traiter
une forét.

m Q11. Ecrire les fonctions ordre_suffixe : int arbre -> int list qui renvoient les listes des neeuds dans ordre du
parcours suffixe.

m Q12. Ecrire une fonction degre : 'a arbre -> int qui donne le degré d’un arbre, c’est-a-dire la plus grande arité
de ses nceuds. L'arité d'un noeud est son nombre de sous-arbres.

3 Tries

Dans cette partie on cherche a implémenter un algorithme d’auto-complétion, comme lorsqu’on appuie sur la touche
tab dans le terminal.

On dispose d'un vocabulaire v, une liste de mots qu’on veut pouvoir compléter une fois qu’on en a écrit un préfixe p.

Par exemple si notre vocabulaire est let mots = ["diane"; "dire"; "diva"; "divan"; "divin"; "do"; "dodo";
dodu"; "don"; "donc"; "dont"];; et que le préfixe déja tapé est let p = "dir", alors on peut auto-compléter en "dire".
Par contre si on a let p = "dod", on peut compléter en "dodo" ou "dodu".

MP2I - 2025/2026 Informatique - TP n°15 - Arbres et tries 3

Une approche naive serait de parcourir tous les mots de v, lettre a lettre jusqu’a trouver un mot dont le préfixe est p,
ce qui est en O(|v]| = |p]).

Une manieére plus efficace quand on veut faire la completion plusieurs fois de suite est de créer un trie.

Un trie (ou arbre préfixe) est un arbre dont la racine est étiquetée d’un caractere vide, les feuilles sont étiquetées d’'un
symbole spécial $ qui indique une fin de mot et chaque autre sommet est étiqueté d'une lettre. Les mots qui ont les
mémes préfixes sont rangés dans les mémes branches de l'arbre.

Sl existe un chemin entre la racine et une feuille $, alors les lettres qu’on croisent sur le chemin forment un mot du
vocabulaire.

Pour le vocabulaire exemple précédent, on obtient le trie suivant :

a r \ d $ n

' s S | —
n e a i o] u $

' e S H| !

e $ ${[nf n $ $ $
' !

$ $

+

3.1 Utilitaires pour les mots

7~

En Ocaml, les string sont comme des tableaux de caracteres, mais avec une syntaxe différente.

On accede a la lettre en position ; d'une chaine chaine (la numérotation commence a 0) avec chaine. [i]
On calcule la longueur d’une chaine de caractéres avec String.length

On concaténe deux chaines de caracteres avec ~

Pour transformer un caractére c en une chaine de caracteres de longueur 1, on utilise String.make 1 c.

\

On définit I’alias de type suivant : type mot = char list

m Q13. Ecrire une fonction mot_of_string : string -> mot prenant en entrée une chaine de caractéres et renvoyant
la liste de ses caractéres, avec un caractére $ rajouté a la fin.

mot_of_string "bonjour";;

- 1 char list = ['b'; 'o'; 'n'; 'j'; 'o'; 'u'; 'r'; '$']
m Q14. Ecrire une fonction afficher: mot -> unit qui prend en entrée une liste de caracteres et affiche le mot corres-
pondant, suivi d'un retour a la ligne. Les éventuels caractéres $ seront ignorés.

afficher_liste ['b'; 'o'; 'n'; 'j'; 'o'; 'u'; 'r'; '$'l;;
bonjour
- 1 ounit = ()

3.2 Opérations élémentaires sur les tries

m Q15. Ecrire une fonction cardinal: trie -> int renvoyant le nombre de mots contenus dans le vocabulaire d’'un
trie.

m Q16. Ecrire une fonction appartient : trie -> mot -> bool qui détermine si un mot est dans le vocabulaire d’un
trie.

m Q17. Ecrire une fonction ajouter : trie -> mot -> trie qui ajoute un mot & un trie.

MP21 - 2025/2026 Informatique - TP n°15 - Arbres et tries 4

m Q18. Ecrire une fonction trie_of_list : string list -> trie prenant en entrée une liste de chaines de caracteéres
et renvoyant un trie contenant exactement les mots de cette liste (auxquels on a ajouté un $).

m Q19. Ecrire une fonction afficher_mots : trie -> unit qui affiche tous les mots appartenant au vocabulaire d’un
trie (sans les $ finals), a raison d’un mot par ligne.

3.3 Autocomplétion

m Q20. Ecrire une fonction autocompletion : trie -> string -> unit qui étant donné un trie et la partie du mot déja
tapée, affiche tous les mots que 'utilisateur pourrait étre en train de taper.

On pourra refaire la question mais en renvoyant cette fois la liste des mots qu’il est possible de former.
3.4 Annagrammes

m Q21. Ecrire une fonction calculer_occurrences : string -> int array quiprend en entrée une chaine de caractéeres
s et renvoie un int array de longueur 256 tel que t. (i) soit égal au nombre d’occurrences de int_of_char i
dans s.

m Q22. Ecrire une fonction afficher_mots_contenus : trie -> string -> unit qui prend en entrée un mot sous forme
de chaine de caractéres (sans $ final) et un trie, et affiche tous les mots du trie que I'on peut former en utilisant
tout ou partie des lettres du mot fourni. Si une lettre est répétée dans I'entrée elle peut étre utilisée autant
de fois qu’elle est répétée, sinon elle ne peut étre utilisée qu’une seule fois.

m Q23. Ecrire une fonction afficher_anagrammes : trie -> string -> unit qui prend en entrée un mot sous forme de
chaine de caracteres et affiche toutes ses anagrammes présentes dans le trie. Une anagramme d’un mot est
un mot constitué exactement des mémes lettres (avec le méme nombre d’occurrences) mais dans un ordre
différent (on considérera qu'un mot est anagramme de lui-méme).

	Mise en jambes : arbres binaires
	Arbres n-aires
	Tries
	Utilitaires pour les mots
	Opérations élémentaires sur les tries
	Autocomplétion
	Annagrammes

