
MP2I - 2025/2026 Informatique – TP n°15 – Arbres et tries 1/4

TP n°15 – Arbres et tries

1 Mise en jambes : arbres binaires
On rappelle qu’en Ocaml les arbres binaires peuvent être représentés par le type suivant :

type 'a arbrebin = Vide | N of 'a arbrebin * 'a * 'a arbrebin;;

2

10 3

7 4

■ Q1. Représenter l’arbre ci-dessus en Ocaml.
■ Q2. Écrire une fonction récursive hauteur : 'a arbrebin -> int qui calcule la hauteur d’un arbre.
■ Q3. Écrire une fonction récursive somme : int arbrebin -> int qui calcule la somme des étiquettes d’une arbre.

On considère l’arbre suivant :

■ Q4. Donner l’ordre dans lequel les noeuds sont traités par :
■ Un parcours en profondeur infixe
■ Un parcours en profondeur préfixe
■ Un parcours en profondeur suffixe
■ Un parcours en largeur

■ Q5. Écrire une fonction en Ocaml est_dans a e: 'a arbrebin-> 'a -> bool qui vérifie si une étiquette est dans un
arbre en utilisant un parcours en largeur.
On pourra utilsier le module Queue de Ocaml. Les primitives ont les noms suivants, le type ’a Queue.t dési-
gnant une file d’éléments de type ’a :

■ Queue.create : unit -> 'a Queue.t qui crée une file vide
■ Queue.is_empty : 'a Queue.t -> bool qui vérifie si une file est vide
■ Queue.push : 'a -> 'a Queue.t -> unit qui ajoute un élément (equivalent de enfile)
■ Queue.pop : 'a Queue.t -> 'a qui retire et renvoie l’élément le plus récent (équivalent de defile)
■ Queue.peek : 'a Queue.t -> 'a qui renvoie sans retirer l’élément le plus récent.

■ Q6. Dessiner l’arbre parfait à 15 sommets. Que remarquez-vous sur le nombre de fils d’un sommet d’un arbre
parfait ? Que remarquez vous sur la hauteur des deux sous-arbres d’un noeud dans un arbre parfait ? On
admettre que ces deux propriétés caractérisent les arbres parfaits.

■ Q7. En utilisant la remarque précédente, écrire en Ocaml une fonction qui vérifie si un arbre est parfait en utili-
sant un parcours en profondeur.

MP2I - 2025/2026 Informatique – TP n°15 – Arbres et tries 2/4

2 Arbres 𝑛-aires
On définit les arbres n-aires ainsi en Ocaml (Ici on utilise une liste pour ranger les sous-arbres) :

type 'a arbre = Noeud of 'a * ('a arbre list);;

On définit aussi un alias pour les listes d’arbres, qui sont des forêts.
type 'a foret = 'a arbre list;;

5

9 1

3 8

7

6

Exemple d’arbre

■ Q8. Définir l’arbre précédent en Ocaml.

On peut calculer la hauteur en Caml à l’aide de deux fonctions mutuellement récursives :
let rec hauteur arbre =
match arbre with
| Noeud(_,[]) -> 0
| Noeud (_, fils) -> 1 + max_hauteur_foret fils

and max_hauteur_foret foret = match foret with
| [] -> 0
| arbre :: autres -> max (hauteur arbre) (max_hauteur_foret autres)

;;

■ Q9. Compléter le code suivant pour écrire la fonction taille : 'a arbre -> int.
let rec taille arbre = (*calcule le nombre de sommets d'un arbre*)
match arbre with
| Noeud(_,[]) ->
| Noeud (_, fils) ->

and taille_foret foret = (*calcule le nombre de noeuds dans une foret d'arbres*)
match foret with
| [] ->
| arbre :: autres ->

;;

On peut étendre la notion de parcours vue sur les arbres binaires aux arbres quelconques.

■ Le parcours préfixe consiste à traiter l’étiquette avant de traiter les sous-arbres.
■ Le parcours infixe n’a plus de sens puisqu’on peut avoir un nombre quelconque de sous-arbres.
■ Le parcours suffixe consiste à traiter les sous-arbres avant de traiter l’étiquette.
■ Le parcours en largeur est défini de la même façon.

■ Q10. Écrire une fonction parcours_prefixe : int arbre -> unit qui affiche les noeuds dans l’ordre du parcours
préfixe. Comme pour la taille, on peut faire une fonction pour traiter un noeud et une fonction pour traiter
une forêt.

■ Q11. Écrire les fonctions ordre_suffixe : int arbre -> int list qui renvoient les listes des nœuds dans l’ordre du
parcours suffixe.

■ Q12. Écrire une fonction degre : 'a arbre -> int qui donne le degré d’un arbre, c’est-à-dire la plus grande arité
de ses nœuds. L’arité d’un noeud est son nombre de sous-arbres.

3 Tries
Dans cette partie on cherche à implémenter un algorithme d’auto-complétion, comme lorsqu’on appuie sur la touche
tab dans le terminal.
On dispose d’un vocabulaire 𝑣, une liste de mots qu’on veut pouvoir compléter une fois qu’on en a écrit un préfixe 𝑝.
Par exemple si notre vocabulaire est let mots = ["diane"; "dire"; "diva"; "divan"; "divin"; "do"; "dodo";

dodu"; "don"; "donc"; "dont"];; et que le préfixe déjà tapé est let p = "dir", alors on peut auto-compléter en "dire".
Par contre si on a let p = "dod", on peut compléter en "dodo" ou "dodu".

MP2I - 2025/2026 Informatique – TP n°15 – Arbres et tries 3/4

Une approche naive serait de parcourir tous les mots de 𝑣, lettre à lettre jusqu’à trouver un mot dont le préfixe est 𝑝,
ce qui est en 𝑂(|𝑣| ∗ |𝑝|).
Une manière plus efficace quand on veut faire la completion plusieurs fois de suite est de créer un trie.

Un trie (ou arbre préfixe) est un arbre dont la racine est étiquetée d’un caractère vide, les feuilles sont étiquetées d’un
symbole spécial $ qui indique une fin de mot et chaque autre sommet est étiqueté d’une lettre. Les mots qui ont les
mêmes préfixes sont rangés dans les mêmes branches de l’arbre.
S’il existe un chemin entre la racine et une feuille $, alors les lettres qu’on croisent sur le chemin forment un mot du
vocabulaire.
Pour le vocabulaire exemple précédent, on obtient le trie suivant :

d

i

a

n

e

$

r

e

$

v

a

$ n

$

i

n

$

o

d

o

$

u

$

$ n

$ t

$

c

$

3.1 Utilitaires pour les mots

En Ocaml, les string sont comme des tableaux de caractères, mais avec une syntaxe différente.
On accède à la lettre en position 𝑖 d’une chaine chaine (la numérotation commence à 0) avec chaine.[i]

On calcule la longueur d’une chaine de caractères avec String.length

On concatène deux chaines de caractères avec ^

Pour transformer un caractère c en une chaine de caractères de longueur 1, on utilise String.make 1 c.

On définit l’alias de type suivant : type mot = char list

■ Q13. Écrire une fonction mot_of_string : string -> mot prenant en entrée une chaîne de caractères et renvoyant
la liste de ses caractères, avec un caractère $ rajouté à la fin.

mot_of_string "bonjour";;
- : char list = ['b'; 'o'; 'n'; 'j'; 'o'; 'u'; 'r'; '$']

■ Q14. Écrire une fonction afficher: mot -> unit qui prend en entrée une liste de caractères et affiche le mot corres-
pondant, suivi d’un retour à la ligne. Les éventuels caractères $ seront ignorés.

afficher_liste ['b'; 'o'; 'n'; 'j'; 'o'; 'u'; 'r'; '$'];;
bonjour
- : unit = ()

3.2 Opérations élémentaires sur les tries
■ Q15. Écrire une fonction cardinal: trie -> int renvoyant le nombre de mots contenus dans le vocabulaire d’un

trie.
■ Q16. Écrire une fonction appartient : trie -> mot -> bool qui détermine si un mot est dans le vocabulaire d’un

trie.
■ Q17. Écrire une fonction ajouter : trie -> mot -> trie qui ajoute un mot à un trie.

MP2I - 2025/2026 Informatique – TP n°15 – Arbres et tries 4/4

■ Q18. Écrire une fonction trie_of_list : string list -> trie prenant en entrée une liste de chaînes de caractères
et renvoyant un trie contenant exactement les mots de cette liste (auxquels on a ajouté un $).

■ Q19. Écrire une fonction afficher_mots : trie -> unit qui affiche tous les mots appartenant au vocabulaire d’un
trie (sans les $ finals), à raison d’un mot par ligne.

3.3 Autocomplétion
■ Q20. Écrire une fonction autocompletion : trie -> string -> unit qui étant donné un trie et la partie du mot déjà

tapée, affiche tous les mots que l’utilisateur pourrait être en train de taper.
On pourra refaire la question mais en renvoyant cette fois la liste des mots qu’il est possible de former.

3.4 Annagrammes
■ Q21. Écrire une fonction calculer_occurrences : string -> int array qui prend en entrée une chaîne de caractères

s et renvoie un int array de longueur 256 tel que t.(i) soit égal au nombre d’occurrences de int_of_char i

dans s.
■ Q22. Écrire une fonction afficher_mots_contenus : trie -> string -> unit qui prend en entrée un mot sous forme

de chaîne de caractères (sans $ final) et un trie, et affiche tous les mots du trie que l’on peut former en utilisant
tout ou partie des lettres du mot fourni. Si une lettre est répétée dans l’entrée elle peut être utilisée autant
de fois qu’elle est répétée, sinon elle ne peut être utilisée qu’une seule fois.

■ Q23. Écrire une fonction afficher_anagrammes : trie -> string -> unit qui prend en entrée un mot sous forme de
chaîne de caractères et affiche toutes ses anagrammes présentes dans le trie. Une anagramme d’un mot est
un mot constitué exactement des mêmes lettres (avec le même nombre d’occurrences) mais dans un ordre
différent (on considérera qu’un mot est anagramme de lui-même).

	Mise en jambes : arbres binaires
	Arbres n-aires
	Tries
	Utilitaires pour les mots
	Opérations élémentaires sur les tries
	Autocomplétion
	Annagrammes

